Only coordinates of H atoms refined and one overall U_{iso} parameter Unit weights applied $(\Delta/\sigma)_{max} = 0.41$

 Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters (Å²)

Atomic scattering factors

(1974, Vol. IV)

from International Tables

for X-ray Crystallography

$$U_{\rm eq} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_i^* \mathbf{a}_i \cdot \mathbf{a}_j$$

	х	У	z	U_{eq}
O(1)	0.0921 (2)	0.6358(1)	0.8014(1)	0.0383
O(2)	0.3032(3)	0.7306(1)	0.8220 (2)	0.0598
C(1)	-0.0274(3)	0.6624(1)	0.7066 (2)	0.0344
C(2)	-0.1791 (3)	0.5997(1)	0.6753 (2)	0.0301
C(3)	-0.2996 (4)	0.6335 (2)	0.5748 (2)	0.0386
C(4)	-0.3905 (4)	0.7077 (2)	0.5971 (2)	0.0455
C(5)	-0.2397 (4)	0.7658 (2)	0.6322 (2)	0.0475
C(6)	-0.1220 (4)	0.7775 (2)	0.5459 (2)	0.0483
C(7)	-0.0329 (4)	0.7034 (2)	().5216 (2)	0.0439
C(8)	0.0893 (4)	0.6748 (2)	0.6194 (2)	0.0393
C(9)	-0.1173 (4)	0.7366 (1)	0.7301 (2)	0.0399
C(10)	-0.1845 (4)	0.6459 (2)	0.4870(2)	0.0427
C(11)	-0.3057 (3)	0.5833(1)	0.7600 (2)	0.0359
C(12)	-0.4675 (4)	0.5317 (2)	0.7140(2)	0.0434
C(13)	0.3919 (4)	0.4572 (2)	0.6814 (2)	0.0474
C(14)	-0.2886 (4)	0.4181 (2)	0.7778 (3)	0.0492
C(15)	-0.1273 (4)	0.4682 (2)	0.8270 (2)	0.0445
C(16)	0.0034 (4)	0.4813 (2)	0.7464 (2)	0.0416
C(17)	-0.0982 (4)	0.5217(1)	0.6502 (2)	0.0381
C(18)	-0.2033 (4)	0.5434 (2)	0.8569 (2)	0.0381
C(19)	-0.2580 (4)	0.4691 (2)	0.6026 (2)	0.0456
C(20)	0.2436 (4)	0.6725 (2)	0.8500 (2)	0.0426
C(21)	0.3257 (5)	0.6300(2)	0.9430(2)	0.0520

Table 2. Selected geometric parameters (Å, °)

C(1)—C(2)	1.580 (3)	C(2)—C(11)	1.565 (3)
C(2)—C(3)	1.575 (3)	C(2)—C(17)	1.564 (3)
C(1)— $C(2)$ — $C(3)$	102.7 (2)	C(1)—C(2)—C(17)	114.4 (2)
C(1)— $C(2)$ — $C(11)$	114.4 (2)	C(3)—C(2)—C(17)	110.3 (2)
C(3)— $C(2)$ — $C(11)$	109.9 (2)	C(11)—C(2)—C(17)	105.1 (2)
C(2)—C(1)- C(1)—O(1)- C(1)—O(1)-	O(1)C(20) C(20)O(2) C(20)C(21)	177.1 (2) 	

Table 3. Contact distances (Å)

$O(1) \cdot \cdot \cdot H(161)$	2.26 (3)	$O(2) \cdot \cdot \cdot H(82)$	2.36(3)
$O(1) \cdot \cdot \cdot H(182)$	2.29 (3)	O(2)···H(92)	2.51 (3)

H atoms were located by means of a Fourier difference map. Data collection: CAD-4 Software (Enraf-Nonius, 1989).

Cell refinement: CAD-4 Software. Data reduction: CRYSTALS (Watkin, Carruthers & Betteridge, 1988). Program(s) used to solve structure: SHELXS86 (Sheldrick, 1990). Program(s) used to refine structure: CRYSTALS. Molecular graphics: CAMERON (Pearce, Watkin & Prout, 1992). Software used to prepare material for publication: CRYSTALS.

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: PA1240). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

Boelema, E., Strating, J. & Wynberg, H. (1972). *Tetrahedron Lett.* pp. 1175–1178.

© 1996 International Union of Crystallography Printed in Great Britain – all rights reserved Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.

- Graham, W. D. & Schleyer, P. von R. (1972). Tetrahedron Lett. pp. 1179–1180.
- Graham, W. D., Schleyer, P. von R., Hageman, E. W. & Wenkert, E. (1973). J. Am. Chem. Soc. 95, 5785–5786.
- Larson, A. C. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 291–294. Copenhagen: Munksgaard.
- Lomas, J. S., Cordier, C. & Briand, S. (1996). J. Chem. Soc. Perkin Trans. 2, pp. 865–870.
- Lomas, J. S., Cordier, C., Briand, S. & Vaissermann, J. (1996). J. Chem. Soc. Perkin Trans. 2, pp. 871–876.
- Pearce, L., Watkin, D. J. & Prout, C. K. (1992). CAMERON. Program for Plotting Molecular Structures. Chemical Crystallography Laboratory, University of Oxford, England.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sosnowski, J. J., Rheingold, A. L. & Murray, R. K. (1985). J. Org. Chem. 50, 3788–3791.
- Watkin, D. J., Carruthers, J. R. & Betteridge, P. W. (1988). CRYSTALS User Guide. Chemical Crystallography Laboratory, University of Oxford, England.

Acta Cryst. (1996). C52, 2839-2841

2,6-Dibenzoylhydroquinone

KUMAR BIRADHA,^{*a*} GAUTAM R. DESIRAJU,^{*a**} H. L. CARRELL^{*b*} AND A. K. KATZ^{*b*}

^aSchool of Chemistry, University of Hyderabad, Hyderabad 500 046, India, and ^bThe Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA 19111, USA. E-mail: grdch@uohyd.ernet.in

(Received 13 March 1996; accepted 7 June 1996)

Abstract

The title compound, $C_{20}H_{14}O_4$, forms an infinite network of O—H···O and C—H···O hydrogen bonds. The phenyl rings of the benzoyl groups are non-coplanar with the hydroquinone moiety.

Comment

In the crystal structure of the title compound, (I), $O - H \cdots O$ and $C - H \cdots O$ hydrogen bonds (Desiraju, 1991) are found to be important.

Acta Crystallographica Section C ISSN 0108-2701 © 1996

The two carbonyl groups point in roughly opposite directions. An ORTEPII (Johnson, 1976) plot of the structure is shown in Fig. 1. The two phenyl rings of the benzoyl groups are non-coplanar with the hydroquinone moiety, with the angles between the planes of the phenyl and hydroquinone rings being 55.3 and 63.7°. The hydrogen-bond network is shown in Fig. 2. The phenolic HO3 atom forms an intramolecular O-H···O hydrogen bond with the carbonyl O1 atom $[H \cdots O \ 1.74 \ (6),$ $O \cdots O 2.566(3)$ Å, $O - H \cdots O [49(5)^{\circ}]$, while the other phenolic HO4 atom forms an intermolecular O-H···O hydrogen bond with the carbonyl $O2^i$ atom $[H \cdots O^i]$ 1.87 (4), $O \cdots O^{i}$ 2.715 (3) Å, $O - H \cdots O^{i}$ 170 (5)°; symmetry code: (i) $-\frac{1}{2} - x$, 2 - y, $\frac{1}{2} + z$]. The carbonyl group which is involved in the intramolecular hydrogen bond is in the plane of the hydroquinone moiety [O1-C7-C8—C9 $-9.0(4)^{\circ}$], while the other carbonyl group is non-coplanar [O2-C14-C10-C9 137.1 (3)°]. The C7-O1 bond length [1.239(3)Å] is somewhat longer than the C14—O2 bond length [1.225 (3) Å]. Similarly, the C9–O3 bond length [1.351(3)Å] is shorter than the C12—O4 bond length [1.363 (3) Å]. These distance differences may be due to the formation of the sixmembered intramolecular hydrogen bond between O3-H and O1=C7, which is similar to that observed in the crystal structure of naphthazarin (Shiau et al., 1980). The phenolic O4ⁱⁱ atom forms a C—H···O hydrogen bond with the C20—H group $[H \cdots O^{ii} 2.49(3), C \cdots O^{ii}]$ 3.166 (4) Å, C— $H \cdots O^{ii}$ 132 (2)°; symmetry code: (ii) $-\frac{1}{2}-x$, 2-y, $z-\frac{1}{2}$] that is part of an infinite network of hydrogen bonds (Fig. 2). The other phenolic O atom, O3ⁱⁱⁱ, also participates in a C-H···O hydrogen bond with C19—H [H···Oⁱⁱⁱ 2.70(5), C···Oⁱⁱⁱ 3.310(4) Å, C—H···Oⁱⁱⁱ 122(4)°; symmetry code: (iii) $\frac{1}{2} + x$, $\frac{3}{2} - y$, 1 - z]. We note that the title compound adopts a noncentrosymmetric space group and that the relative orientation of the two phenolic H atoms is syn.

Fig. 1. An ORTEPII (Johnson, 1976) diagram of the title compound. Displacement ellipsoids are plotted at the 50% probability level and H atoms are drawn as small circles for clarity.

Fig. 2. The infinite network of O-H···O and C-H···O hydrogen bonds in the crystal structure of the title compound, with [001] horizontal and [010] vertical.

Experimental

2,6-Dibenzoylhydroquinone was prepared according to the literature procedure of Bogert & Howells (1930) and yellow crystals of the compound were obtained from ethanol solution.

Crystal data

$C_{20}H_{14}O_4$	Mo $K\alpha$ radiation
$M_r = 318.31$	$\lambda = 0.71073 \text{ Å}$
Orthorhombic	Cell parameters from 250
P212121	reflections
a = 8.0310(10) Å	$\theta = 10.5 - 18.8^{\circ}$
<i>b</i> = 13.1610(10) Å	$\mu = 0.096 \text{ mm}^{-1}$
<i>c</i> = 14.4770 (10) Å	T = 165 (2) K
$V = 1530.2 (2) \text{ Å}^3$	Needle
Z = 4	$0.30 \times 0.20 \times 0.15$ mm
$D_x = 1.382 \text{ Mg m}^{-3}$	Yellow
$D_m = 1.377 \text{ Mg m}^{-3}$	
D_m measured by flotation	

Data collection

Enraf-Nonius FAST areadetector diffractometer $[I > 2\sigma(I)]$ Rotation scans $\theta_{\rm max} = 28.69^{\circ}$ Absorption correction: $h = 0 \rightarrow 10$ $k=0 \rightarrow 17$ none 2209 measured reflections $l = 0 \rightarrow 18$ 2209 independent reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.0526$ $wR(F^2) = 0.1441$ S = 0.7112207 reflections 273 parameters H atoms refined isotropically $w = 1/[\sigma^2(F_o^2) + (0.1258P)^2]$ + 2.7021P] where $P = (F_0^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} = -0.105$

2031 observed reflections No standard reflections (area-detector data)

 $\begin{aligned} \Delta\rho_{\rm max} &= 0.682 \ {\rm e} \ {\rm \AA}^{-3} \\ \Delta\rho_{\rm min} &= -0.233 \ {\rm e} \ {\rm \AA}^{-3} \end{aligned}$ Extinction correction: none Atomic scattering factors from International Tables for Crystallography (1992, Vol. C, Tables 4.2.6.8 and 6.1.1.4) Absolute configuration: Flack (1983) Flack parameter = -0.3(17)

$U_{\rm eq} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_i^* \mathbf{a}_i \cdot \mathbf{a}_j.$

	x	v	z	U_{ca}
01	0.0659 (3)	0.6626 (2)	0.87665 (15)	0.0282 (5)
O2	-0.1716 (3)	0.9239 (2)	0.54636(13)	0.0196 (4)
03	0.0722 (3)	0.74704 (15)	0.71695 (13)	0.0173 (4)
O4	-0.3226(3)	1.0525 (2)	0.86010(14)	0.0202 (4)
C1	-0.0128(3)	0.7445 (2)	1.0138 (2)	0.0161 (5)
C2	-0.0683(4)	0.6564 (2)	1.0590(2)	0.0193 (5)
C3	-0.0801(4)	0.6553 (2)	1.1549 (2)	0.0242 (6)
C4	-0.0346(4)	0.7409 (3)	1.2060(2)	0.0267 (7)
C5	0.0239 (4)	0.8271 (2)	1.1610(2)	0.0238 (6)
C6	0.0333 (4)	0.8292 (2)	1.0649 (2)	0.()194 (6)
C7	0.0036 (4)	0.7399 (2)	0.9112 (2)	0.0176 (5)
C8	-0.0550(3)	0.8242 (2)	0.8520(2)	0.0134 (5)
C9	-0.0177 (3)	0.8223 (2)	0.7561 (2)	0.0132 (5)
C10	-0.0819 (3)	().8991 (2)	0.6987 (2)	0.0130 (5)
C11	-0.1858 (3)	().9739 (2)	0.7360 (2)	0.0150 (5)
C12	-0.2218 (4)	0.9762 (2)	0.8297 (2)	0.0148 (5)
C13	-0.1568 (3)	0.9014 (2)	0.8877 (2)	0.0146 (5)
C14	-0.0535 (3)	0.9023 (2)	0.5962 (2)	0.0143 (5)
C15	0.1158 (3)	0.8874 (2)	0.5574 (2)	0.0139 (5)
C16	0.2588 (4)	0.9103 (2)	0.6079 (2)	0.0180 (5)
C17	0.4154 (4)	0.9017 (2)	0.5680(2)	0.0224 (6)
C18	0.4307 (4)	0.8694 (2)	0.4768 (2)	0.0231 (6)
C19	0.2885 (4)	0.8454 (2)	0.4260 (2)	0.0227 (6)
C20	0.1324 (4)	0.8546 (2)	0.4657 (2)	0.0171 (5)

Table 2. Selected geometric parameters (Å, °)

01—C7	1.239 (3)	С8—С9	1.421 (3)
O2-C14	1.225 (3)	C9—C10	1.406 (3)
О3С9	1.351 (3)	C10-C11	1.398 (4)
O4-C12	1.363 (3)	C10-C14	1.502 (3)
C1C6	1.389 (4)	C11C12	1.388 (4)
C7—C8	1.479 (4)	C12—C13	1.395 (4)
C8—C13	1.403 (4)	C14—C15	1.484 (4)
C6-C1-C2	120.0 (2)	C9-C10-C14	123.2 (2)
01-C7-C8	120.7 (2)	C12-C11-C10	121.1 (2)
01–C7–C1	118.1 (2)	04—C12—C11	117.1 (2)
C8-C7-C1	121.2 (2)	O4-C12-C13	123.2 (2)
C13-C8-C9	119.7 (2)	C11—C12—C13	119.7 (2)
C13—C8—C7	121.1 (2)	C12-C13-C8	120.5 (2)
C9—C8—C7	119.1 (2)	O2-C14-C15	121.1(2)
O3C9C10	118.4 (2)	O2-C14-C10	118.1 (2)
O3—C9—C8	122.4 (2)	C15-C14-C10	120.7 (2)
C10-C9-C8	119.1 (2)	C16C15C20	119.0 (3)
C11—C10—C9	119.8 (2)	C16-C15-C14	121.8 (2)
C11-C10-C14	116.9 (2)	C20-C15-C14	119.1 (2)

Data collection: *MADNES* (Enraf-Nonius, 1990). Cell refinement: *MADNES*. Data reduction: *MADNES*. Program(s) used to solve structure: *SHELXS*86 (Sheldrick, 1990). Program(s) used to refine structure: *SHELXL*93 (Sheldrick, 1993). Molecular graphics: *ORTEP* (Johnson, 1976) and *PLUTO* (Motherwell & Clegg, 1978). Software used to prepare material for publication: *SHELXL*93.

Financial assistance from the UGC (KB) and grant CN-10 of the American Cancer Society (HLC and AKK) is acknowledged.

References

- Bogert, M. T. & Howells, H. P. (1930). J. Am. Chem. Soc. 52, 837-850.
- Desiraju, G. R. (1991). Acc. Chem. Res. 24, 290-296.

Enraf-Nonius (1990). MADNES. Program for Area-Detector Data Interpretation. Enraf-Nonius, Delft, The Netherlands.

- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Motherwell, W. D. S. & Clegg, W. (1978). PLUTO. Program for Plotting Molecular and Crystal Structures. University of Cambridge, England.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
- Shiau, W.-I., Duesler, E. N., Paul, I. C., Curtin, D. Y., Blann, W. G. & Fyfe, C. A. (1980). J. Am. Chem. Soc. 102, 4546–4548.

Acta Cryst. (1996). C52, 2841-2844

Balancing Conjugational Stabilization and Torsional Strain. The Solid-State Structure of a 2-Thioalkyl-Substituted Pyridine *N*-Oxide

JENS HARTUNG,^a INGRID SVOBODA^b AND HARTMUT FUESS^b

^aInstitut für Organische Chemie, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany, and ^bStrukturforschung, FB Materialwissenschaft, Technische Hochschule Darmstadt, Petersenstrasse 20, D-64287 Darmstadt, Germany. E-mail: hartung@chemie.uniwuerzburg.de

(Received 12 March 1996; accepted 28 May 1996)

Abstract

The solid-state geometry of 2-(1-phenyl-4-penten-1-ylthio)pyridine *N*-oxide, $C_{16}H_{17}NOS$, provides an insight into the spatial arrangement of the 2-thioalkyl side chain. The N2—C7—S8 bond angle [112.0 (2)°] shows a significant and unprecedented distortion from the expected value of 120° towards the pyridine *N*-oxide O atom. The substituents of the thioether are arranged to allow conjugational interaction of the lone pairs on sulfur and the heteroaromatic nucleus on one side, and a minimization of conformational strain between the pyridyl and the alkenyl groups on the other side.

Comment

Recent findings on the utility of *O*-alkylated 1-hydroxypyridine-2(1*H*)-thiones, *e.g.* (1), as alkoxyl radical pre-

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: PA1231). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.